41 research outputs found

    How pain control attempts guide attention : an experimental analysis

    Get PDF

    No evidence for threat-induced spatial prioritization of somatosensory stimulation during pain control using a synchrony judgment paradigm

    Get PDF
    Topical research efforts on attention to pain often take a critical look at the modulatory role of top-down factors. For instance, it has been shown that the fearful expectation of pain at a location of the body directs attention towards that body part. In addition, motivated attempts to control this pain were found to modulate this prioritization effect. Such studies have often used a temporal order judgment task, requiring participants to judge the order in which two stimuli are presented by indicating which one they perceived first. As this constitutes a forced-choice response format, such studies may be subject to response bias. The aim of the current study was to address this concern. We used a ternary synchrony judgment paradigm, in which participants judged the order in which two somatosensory stimuli occurred. Critically, participants now also had the option to give a `simultaneous' response when they did not perceive a difference. This way we eliminated the need for guessing, and thus reduced the risk of response bias. One location was threatened with the possibility of pain in half of the trials, as predicted by an auditory cue. Additionally, half of the participants (pain control group) were encouraged to avoid pain stimuli by executing a quick button press. The other half (comparison group) performed a similar action, albeit unrelated to the occurrence of pain. Our data did not support threat-induced spatial prioritization, nor did we find evidence that pain control attempts influenced attention in any way

    Detection of tactile change detection on a bodily location where pain is expected

    Get PDF
    As it is adaptive to accurately detect and localize bodily threats, it has been proposed that the brain prioritizes somatosensory input at body locations where pain is expected. To test this proposition, the detection of tactile changes on a body location was investigated to assess whether detection was facilitated by threat of pain. Healthy participants (N = 47) indicated whether two consecutive patterns of three tactile stimuli were the same or not. Stimuli could be administered at eight possible locations. In half of the trials, the same pattern was presented twice. In the other half, one stimulus location was different between the two displays. To induce bodily threat, a painful stimulus was occasionally administered to the non-dominant lower arm. Mean accuracy of tactile change detection as a function of location was analyzed using repeated-measures analysis of variance (ANOVA). Tactile changes on the threatened arm (i.e., when a tactile stimulus emerged at or disappeared from that arm), both at the exact pain location (lower arm) and at the other location (upper arm), were better detected than tactile changes on other limbs

    Staying informed and bridging 'social distance' : smartphone news use and mobile messaging behaviors of Flemish adults during the first weeks of the COVID-19 pandemic

    Get PDF
    he authors explore patterns of smartphone use during the first weeks following the outbreak of the coronavirus disease 2019 pandemic in Belgium, focusing on citizens’ use of smartphones to consume news and to communicate and interact with others. Unique smartphone tracking data from 2,778 Flemish adults reveal that at the height of the outbreak, people used their smartphone on average 45 minutes (28 percent) more than before the outbreak. The number of smartphone pickups remained fairly stable over this period. This means that on average, users did not turn to their smartphones more frequently but used them longer to access news (54 percent increase), social media apps (72 percent increase), messaging apps (64 percent increase), and the voice call feature (44 percent increase). These smartphone use patterns suggest that smartphones are key instruments that help citizens stay informed, in sync, and in touch with society during times of crisis

    Mobile pupillometry in manual assembly : a pilot study exploring the wearability and external validity of a renowned mental workload lab measure

    Get PDF
    Human operators in the upcoming Industry 4.0 workplace will face accelerating job demands such as elevated cognitive complexity. Unobtrusive objective measures of mental workload (MWL) are therefore in high demand as indicated by both theory and practice. This pilot study explored the wearability and external validity of pupillometry, a MWL measure robustly validated in laboratory settings and now deployable in work settings demanding operator mobility. In an ecologically valid work environment, 21 participants performed two manual assemblies - one of low and one of high complexity - while wearing eye-tracking glasses for pupil size measurement. Results revealed that the device was perceived as fairly wearable in terms of physical and mental comfort. In terms of validity, no significant differences in mean pupil size were found between the assemblies even though subjective mental workload differed significantly. Exploratory analyses on the pupil size when attending to the assembly instructions only, were inconclusive. The present work suggests that current lab-based procedures might not be adequate yet for in-the-field mobile pupillometry. From a broader perspective, these findings also invite a more nuanced view on the current validity of lab-validated physiological MWL-measures when applied in real-life settings. We therefore conclude with some key insights for future development of mobile pupillometry
    corecore